
WEEK 3: COMPLEX FOURIER AND LAPLACE INTEGRALS
PRESENTED BY SAM AND SCRIBED BY STEVE

1. COMPLEX INTEGRALS

Previously, we saw that for real amplitude A(x) and phase φ(x), we have the expansion∫ ε

0

A(x) exp(−λφ(x)dx ∼
∞∑
j=0

ajλ
−(1+j)/k,

where

A(x) =

∞∑
j=l

bjx
j

φ(x) =

∞∑
j=k

cjx
j ,

and aj is a polynomial in bl, . . . , bj , c−1k , ck, . . . , cj . For complex A(z), the extension of the result is trivial as

we can write

A(z) = <{A}(z) + i={A}(z),

and apply the above result to each summand.

The real work lies in extending φ to the complex plane. Suppose that A and φ are analytic in a neigh-

bourhood of the origin (so that we may deform our contour of integration without worry).

1.1. Step 1 – Evaluation of the One-Sided Integral. Recall that last class we had defined

I+(λ) =

∫
γ+

A(z) exp(−λφ(z))dz,

where γ+ is the restriction of our curve γ to the domain [0, ε]. We will evaluate I+ by making the change of

variables y = φ(z)1/k. Care must be taken in choosing the kth root, as the expression

y = c
1/k
k x

(
1 +

ck+1

ck
x+ · · ·+ cM

ck
xM−k +O(xM−k+1)

)1/k

,

which we used previously, now defines k different functions, each analytic in a neighbourhood of the origin.

Because of this, we define the primitive kth root by the analytic function

p : C \ R<0 → K = {z : −π/k < arg(z) < π/k},

where p(u1/k) is the unique z ∈ K such that zk = u.

Now, let g = Cγ′(0), for some positive real number C. From our previous results we know φ(x) ∼
ckz

1/k, and by assumption <{φ(γ(t))} ≥ 0, which forces g to be in the set of pre-images of the positive real

half-plane under the mapping ckzk.
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82 Saddle integrals in one variable

K

Figure 4.1 Arrows represent v and (d/dt)|t=0 f (�+(t)).

As in the proof of Theorem 4.2.4, we then have

I+ =
Z

�̃

Ã(y) exp(��yk) dy (4.3.3)

where �̃ = f � �+ is the image of �+ under the change of variables.

γ~ β
α

Figure 4.2 The path �̃ in the cone K and the line segments ↵ and �.

Let p = f (�(")) denote the endpoint of �̃. Let p0 > 0 denote the real part
of p, let ↵ be the line segment [0, p0] and let � denote the line segment [p0, p].
The contour �̃ is homotopic to ↵ + � (see Figure 4.2), whence

R
�̃

h(z) dz =R
↵

h(z) dz +
R
�

h(z) dz for any analytic function h. On compact subsets of K,

FIGURE 1. The quantity g and its image under ckzk in K.

Define f(x) := p(φ(x)1/k). Since φ(γ(t)) remains in the positive real half-plane, it must always remain in

the slit plane, and thus f(γ+(t)) ⊂ K. The change of variables described above becomes

y = f(x) = ηx

(
1 +

ck+1

ck
x+ · · ·+ cM

ck
xM−k +O(xM−k+1)

)1/k

,

where η = g−1p((ckgk)1/k) and y fixes 1 (since p(1) = 1). The Chain Rule implies

η = f ′(0)
d

dt
f(γ+(t))

∣∣∣∣
t=0

= ηg,

and the inverse x = g(y) is given by taking c1/kk η in our expansion from last week:

x =

M−k∑
j=1

ej

(
y

η

)j
+O(yM−k+1),

where ej is a polynomial in ck+1, . . . , cj which can be made explicit. As in the real case, we now have the

expression

I+(λ) =

∫
γ̃

Ã(y) exp(−λyk)dy,

where γ̃ = f ◦ γ+.

Let p be the endpoint of γ̃ at t = ε, p′ = <(p), α be the line segment from the origin to p′, and β be the

line segment from p′ to p.

Then γ̃ is homotopic to α+ β, the curve obtained by joining the end of α to the beginning of β, and for a

function h(z) with analyticity conditions the same as our integrand above∫
γ̃

h(z)dz =

∫
α

h(z)dz +

∫
β

h(z)dz.

On a compact subset of K, <{yk} is bounded below by a positive constant. Thus, on β ⊂ K there exists

constants C and θ such that ∣∣∣Ã exp(−λyk)
∣∣∣ ≤ Ce−θλ,
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FIGURE 2. The line segments α and β.

and

I+ =

∫
α

Ã(y) exp(−λyk)dy +R,

where R→ 0 exponentially. Applying our previous result to∫
α

Ã(y) exp(−λyk)dy

implies

I+(λ) ∼
∞∑
j=l

ajC(k, j)c
−(1+j)/k
k λ−(1+j)/k.

1.2. Step 2 – Two sided integrals. In this section, we consider the expansion of the integral

I(λ) =

∫
γ

A(z) exp(−λφ(z))dz,

where γ : [−ε, ε] → C. To reduce this to the 1-sided integral, we define the contour γ− : [0, ε] → C by

t 7→ γ(−t). As we have changed direction, we have I = I+ − I−, where I− is the integral along γ−.

The only difference between I+ and I− is the difference between the curves γ+ and γ−, which affects our

choice of η, however it must be the case that η− = η+/ω for some ωk = 1. Let the inverses for y = φ(x)1/k

be given by g+(y) and g−(y) on the two curves, so g−(y) = g+(ωy). We also produce amplitudes Ã+(y) and

Ã−(y) satisfying

Ã+(y) = A(g+(y)) · g′+(y)

Ã−(y) = A(g−(y)) · g′−(y)

= A(g−(ωy)) · g′−(ωy)

= ωÃ+(ωy).

Putting this together, we get [yj ]Ã− = ωj−1[yj ]Ã+, and integrating term-by-term followed by taking the

asymptotic expansion of Ã+ tells us αj = (1− ωj+1)aj , where the aj are the coefficients of I+(λ). There are

two cases to consider:

(a) When k is even: Since φ(z) ∼ ckzk, φ(γ(t)) does a U-turn at the origin, with the tangents to φ(γ−(t))

and φ(γ+(t)) coinciding there.
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84 Saddle integrals in one variable

integral I are related to the coe�cients a j for the one-sided integral I+ via
↵ j = (1 � ⇣ j+1)a j. Thus part (iii) of Theorem 4.1.1 is reduced to the correct
identification of ⇣. The evaluation of ⇣ breaks into two cases, depending on the
parity of k.

K

Figure 4.3 k is even: �(�+) is shown solid, and �(��) is shown dotted.

Suppose first that k is even. Since �(z) ⇠ ckzk, the image of the smooth
curve � under � does a U-turn at the origin, with the tangents to the images
�(��(t)) and �(�+(t)) coinciding at t = 0 (see Figure 4.3). Because �� reverses
the orientation of the parametrization, we see that v� := �0�(0) = �v+. The
powers vk

� and vk
+ coincide, whereby

⌘� = v�1
� p(ckvk

�)1/k = �v�1
+ p(ckvk

+)1/k = �⌘+ .

When k is even, therefore, ⇣ takes the value �1. This leads to ↵ j = 2a j for even
j and ↵ j = 0 for odd j, completing the proof of the theorem for even k.

When k is odd, the images of �+ and �� under � point in opposite directions
(see Figure 4.4). Since both are in the closed right half-plane, this implies that
one is in the positive imaginary direction and one is in the negative imaginary
direction. Thus the argument of the tangent to �(�+) is �⇡/2 where the sign �
is given by

� := sgn Im
�
�(�0(0))

 
.

The argument of the tangent to �(��) is ��⇡/2 and thus di↵ers from the argu-
ment of �(�+) by ��⇡. Mapping by the principal kth root shrinks the di↵erence
in arguments by a factor of k, thus

p(ckvk
�)1/k = e�i⇡�/k p(ckvk

+)1/k .

FIGURE 3. The case when k is even.

As γ− reverses orientation, g− = γ′(0) = −g+ and

η− = g−1− p((ckg
k
−)1/k) = −g−1+ p((ckg

k
+)1/k) = −η+,

since k is even. This implies ω = −1 and

αj =

{
2aj : j is even

0 : o.w.
.

(b) When k is odd: The images of ={φ(γ−(t))} and ={φ(γ+(t))} have opposite signs and point in oppo-

site directions. 4.4 Saddle points and Watson’s Lemma 85

Kγ

γ

+

−

Figure 4.4 k is odd: �(�+) and �(��) and their principal 1/k powers.

Again the reversal of parametrization implies v� = �v+, whence

⌘� = (�1) · e�i⇡�/k⌘+ =
⌘+
⇣

with ⇣ = �ei⇡�/k as in the statement of the theorem. ⇤

4.4 Classical methods: steepest descent (saddle point) and
Watson’s Lemma

This section contains some classical results that may be proved using the ma-
chinery of Sections 4.2 and 4.3. Lemma 4.2.2 with k = 1 is a special case of
Watson’s Lemma (smooth amplitude). The usual statement is

Proposition 4.4.1 (Watson’s Lemma) Let A : R+ ! C have asymptotic
development

A(t) ⇠
1X

m=0

bmt�m

with �1 < Re{�0} < Re{�1} < · · · and Re{�m} " 1. Then the Laplace trans-
form has asymptotic series

L(�) :=
Z 1

0
A(t)e��t dt ⇠

1X

m=0

bm�(�m + 1)��(1+�m)

as �! 1.

FIGURE 4. The case when k is odd.

Thus, the argument of the tangent to φ(γ+(t)) is σπ/2 while the argument of φ(γ−(t)) is −σπ/2,

where φ = sgn (={φ(γ′(0))}). The arguments differ by −σπ and shrink by a factor of k when we

take the kth root so again we find that g− = −g+, while now η− = η+/ω where ω = −eiπσ/k.

2. WATSON’S LEMMA

This machinery allows us to prove Watson’s Lemma:
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Proposition 1. Let A : R+ → C have asymptotic expansion

A(t) =

∞∑
m=0

bmt
βm ,

with −1 < <{β0} < <{β1} < · · · and <{βm} → ∞. Then

L(λ) :=

∫ ∞
0

A(t)e−λtdt ∼
∞∑
m=0

bmΓ(βm)λ−(1+j)/k.

Proof. Truncating the path in the integral from the positive real line to [0, ε] introduces only an ex-

ponentially small error. Writing

A(t) =

N∑
m=0

bmt
βm +RN (t),

with RN (t) = O
(
t<{βN+1}

)
at 0, we plug the above into L(λ) and integrate term by term to get

L(λ) ∼
N∑
m=0

∫ ε

0

bmt
βme−λtdt+

∫ ε

0

RN (t)e−λtdt.

Our previous ‘Big-O Lemma’ (Lemma 4.2.1 in the text) then implies∣∣∣∣∫ ε

0

RN (t)e−λtdt

∣∣∣∣→ 0,

and the finite integrals can be evaluated as Laplace transforms. �

3. A PARTIAL EXAMPLE

We conclude by a (partial) example of how this method can be utilized. Let

Ai(x) =
1

2π

∫ ∞
−∞

ei(xt+t
3/3)dt,

be the Airy function – we will outline how one can determine the asymptotics of Ai(x) as x→∞.

First, we change variables by setting t = i
√
xu, which implies

Ai(x) =
i
√
x

2π

∫
iR
e−x

3/2(u−u3/3)du,

and hence we have A(u) = 1 and φ(u) = u− u3/3 here, with respect to the results above. This gives

critical points u = ±1, where we have the Taylor expansions:

T+ =
2

3
− (u− 1)2 − 1

3
(u− 1)3

T− =
−4

3
+ (u+ 1)2 − 1

3
(u+ 1)3.

As we care only about dominant term asymptotics, we truncate the expansions T+(u)− T+(0) and

T−(u)− T−(0) to second order and parametrize their real positive solutions by

y2 = T+(u)− T+(0)

y2− = T−(u)− T−(0).
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Now consider the section of the integral near u = 1 (one can deal with the integral near u = −1

analagously). Here we have y2 = −(u − 1)2 which gives a parametrization y = i(u − 1). Thus, the

contribution of the full integral near u = 1, I(λ), is given by

I(λ) ∼ −i
∫ 1+ε

1−ε
e−λ((1−iy)−(1−iy)

3/3)dy

= −ie−λ
2/3

∫ 1+ε

1−ε
e−λ(y

2−iy3/3)dy

= −ie−λ
2/3

∫ 1+ε

1−ε
e−λy

2
∞∑
n=0

(iλy3/3)n

n!
dy

= −ie−λ
2/3

∞∑
n=0

∫ 1+ε

1−ε

e−λy
2

(iλy3/3)n

n!
dy,

and one may now calculate the above integrals. Applying the same approach to the contribution of

the full integral near u = −1 allows one to recover the asymptotics of Ai(x).
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