WEEK 3: COMPLEX FOURIER AND LAPLACE INTEGRALS
PRESENTED BY SAM AND SCRIBED BY STEVE

1. COMPLEX INTEGRALS

Previously, we saw that for real amplitude A(x) and phase ¢(x), we have the expansion

[ A exp(rote)ds ~ S aa 05
0

j=0

where
oo
A(z) = Z b’
j=l
oo
dla) =D cja,
j=k
and a; is a polynomial in by, ..., b;, clzl, Ck, - - -, ¢;. For complex A(z), the extension of the result is trivial as

we can write
A(z) = R{A}(2) +iS{A}(2),

and apply the above result to each summand.
The real work lies in extending ¢ to the complex plane. Suppose that A and ¢ are analytic in a neigh-

bourhood of the origin (so that we may deform our contour of integration without worry).
1.1. Step 1 - Evaluation of the One-Sided Integral. Recall that last class we had defined
Ly = [ AG) exp(—Ad(2))dz,

T+

where v, is the restriction of our curve ~y to the domain [0, ¢]. We will evaluate I by making the change of

variables y = ¢(z)!/*. Care must be taken in choosing the k™ root, as the expression

1/k
yzci/kx <1+Ck"'1x+...+chMk+O(IMk+1)) :
Ck Ck

which we used previously, now defines & different functions, each analytic in a neighbourhood of the origin.

Because of this, we define the primitive k™ root by the analytic function
p:C\Reg = K ={z: —7/k < arg(z) < n/k},

where p(u'/*) is the unique z € K such that 2% = w.

Now, let Y = C4/(0), for some positive real number C. From our previous results we know ¢(z) ~
crz'/*, and by assumption R{#(v(¢))} > 0, which forces Y to be in the set of pre-images of the positive real
half-plane under the mapping cjz".



Y

-

~

AN

S
&S
\\\\
~\\\

&2

//////////////////////Illlll’.:.}

N

Mt

L

FIGURE 1. The quantity Y and its image under ¢ 2" in K.

Define f(x) := p(¢(x)'/*). Since ¢(7(t)) remains in the positive real half-plane, it must always remain in
the slit plane, and thus f(v;4(¢)) C K. The change of variables described above becomes

1/k
y= f(z) =nz 1+Ck+1x+_”+WxM—k+O(xM_k+1)> ,

Ck Ck

7N

where 7 = Y~ !p((cx Y*)1/*) and y fixes 1 (since p(1) = 1). The Chain Rule implies

n=10) & Fo 1)

=nY,
t=0

and the inverse x = ¢(y) is given by taking c,lc/ "1 in our expansion from last week:

M—k

J
Z Yy -
T aY () +O0@yM T,
— n
J
where ¢; is a polynomial in c;1,. .., ¢; which can be made explicit. As in the real case, we now have the

expression
LX) :[A(y) exp(—Ay*)dy,
vy

where ¥ = fo,.

Let p be the endpoint of 4 at t = ¢, p’ = R(p), a be the line segment from the origin to p’, and § be the
line segment from p’ to p.

Then ¥ is homotopic to « + 3, the curve obtained by joining the end of « to the beginning of 3, and for a

function h(z) with analyticity conditions the same as our integrand above

Lh@)dZ:/ah(Z)der/ﬁh(z)dz.

On a compact subset of K, ®{y"*} is bounded below by a positive constant. Thus, on 3 C K there exists
constants C' and 6 such that
| Aexp(—\y*)| < Ce™™,
2



FIGURE 2. The line segments o and 3.

and
L= [ A exp(-X)dy + B,

where R — 0 exponentially. Applying our previous result to

[ Aw ey
implies

L) ~ > a0k, j)ey, A= G/,
j=l

1.2. Step 2 - Two sided integrals. In this section, we consider the expansion of the integral
I\ = / A(z) exp(—Ap(z))dz,
gl

where v : [—¢,¢] — C. To reduce this to the 1-sided integral, we define the contour y_ : [0,¢] — C by
t — v(—t). As we have changed direction, we have I = I, — I_, where I_ is the integral along y_.

The only difference between I and I_ is the difference between the curves v, and _, which affects our
choice of 7, however it must be the case that 7_ = 7, /w for some w* = 1. Let the inverses for y = ¢(x)'/*

be given by g, (y) and g_(y) on the two curves, so g_(y) = g (wy). We also produce amplitudes A (y) and

A_(y) satisfying

t

+() = Alg+() - g, (v)
A_(y)=A(9-(w)) - 4" (v)
= A(g—(wy)) - g~ (wy)

wA (wy).

Putting this together, we get [y/]A_ = wi~![y/]A,, and integrating term-by-term followed by taking the
asymptotic expansion of A tells us a; = (1 — w’/*!)a;, where the a; are the coefficients of I, (\). There are
two cases to consider:
(a) When k is even: Since ¢(z) ~ cx2*, #((t)) does a U-turn at the origin, with the tangents to ¢(v_(t))
and ¢(y4+(t)) coinciding there.



FIGURE 3. The case when k is even.

As ~_ reverses orientation, Y_ =+/(0) = — Y4 and
ne = 2hp((ert) ) = = Y3 p((e ) ) = e,
since k is even. This implies w = —1 and

_J 2a; :jiseven
Oéj =
0 D o.w.

(b) When £k is odd: The images of S{¢(v—(¢))} and S{¢(v+(¢))} have opposite signs and point in oppo-

site directions.

' K

FIGURE 4. The case when k is odd.

Thus, the argument of the tangent to ¢(v4(¢)) is om/2 while the argument of ¢(y_(t)) is —on/2,
where ¢ = sgn (3{¢(7/(0))}). The arguments differ by —o7 and shrink by a factor of k¥ when we
take the k" root so again we find that Y _ = —Y, while now 1 = 1, /w where w = —e'™/,

2. WATSON’S LEMMA

This machinery allows us to prove Watson’s Lemma:
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Proposition 1. Let A : RT — C have asymptotic expansion

At) = i b tP

m=0

with —1 < R{Bo} < R{P1} < --- and R{By} — oc. Then

L(A) = / A(t)e At ~ Y by (B ) AR,
0

m=0

Proof. Truncating the path in the integral from the positive real line to [0, €] introduces only an ex-

ponentially small error. Writing

N
A(t) =) bt + Ry (),

m=0

with Ry (t) = O (t%1P~v+1}) at 0, we plug the above into L(\) and integrate term by term to get

N €
L)~ Y /0 btPm e Mdt + / Ry (t)e Mdt.

€
m=0 0

Our previous ‘Big-O Lemma’ (Lemma 4.2.1 in the text) then implies

/ RN(t)e_’\tdt‘ -0,
0

and the finite integrals can be evaluated as Laplace transforms. O

3. A PARTIAL EXAMPLE

We conclude by a (partial) example of how this method can be utilized. Let

A’L(J?) 1 /OO ei(mt+t3/3)dt,

:ﬂ_oo

be the Airy function — we will outline how one can determine the asymptotics of Ai(x) as x — oc.
First, we change variables by setting ¢ = ¢1/zu, which implies

AZ(I) = 77/;{1—5 . eiIB/Q(U‘*uS/B)du’

and hence we have A(u) = 1 and ¢(u) = u — u®/3 here, with respect to the results above. This gives
critical points © = £1, where we have the Taylor expansions:

T+:§—(u—l)2—%(u—1)3
—4
T‘—?+(u+1)2——(u+1)3

As we care only about dominant term asymptotics, we truncate the expansions 7+ (u) — T+ (0) and

T~ (u) — T (0) to second order and parametrize their real positive solutions by
y? =T"(u) = T(0)
y> =T (u) = T7(0).

a1



Now consider the section of the integral near v = 1 (one can deal with the integral near u = —1
analagously). Here we have y? = —(u — 1)? which gives a parametrization y = i(u — 1). Thus, the
contribution of the full integral near v = 1, I(\), is given by

1te . . \3
10 ~ _Z-/ =M= —(1=i)*/3) g
1

—€

T —Ay*—iy®/3)
= —ie e MY TS dy
1

—€

= —ie_A2/3 /1—"_E B_Ayz S 4(2Ay3/3)ndy
1—e¢

- A2/3Z/1+€ e M’ sz3/3) dy

and one may now calculate the above integrals. Applying the same approach to the contribution of
the full integral near © = —1 allows one to recover the asymptotics of Ai(x).



